

Welcome to cookiecutter-namespace-templates’s documentation!

Getting Started

	Cookiecutter Namespace Template
	Features

	Quickstart

	Tutorial

	Prompts
	Templated Values

	Options

	PyPI Release Checklist
	For Every Release

Options

	Console Script Setup
	How it works

	Usage

Indices and tables

	Index

	Module Index

	Search Page

Cookiecutter Namespace Template

Cookiecutter [https://github.com/cookiecutter/cookiecutter] Namespace
Template for a Python package.

[image: Downloads] [https://pepy.tech/project/cookiecutter-namespace-template] [image: Updates] [https://pyup.io/repos/github/veit/cookiecutter-namespace-template/] [image: Versions] [https://pypi.org/project/cookiecutter-namespace-template/] [image: Contributors] [https://github.com/veit/cookiecutter-namespace-template/graphs/contributors] [image: License] [https://github.com/veit/cookiecutter-namespace-template/blob/main/LICENSE] [image: pre-commit.ci status] [https://results.pre-commit.ci/latest/github/veit/cookiecutter-namespace-template/main] [image: Docs] [https://cookiecutter-namespace-template.readthedocs.io/en/latest/]

Features

	Testing setup with unittest or pytest

	Tox [https://tox.wiki/en/latest/] testing: Setup to easily test for Python
3.8, 3.9, 3.10, 3.11, 3.12 and pypy.

	Sphinx [http://www.sphinx-doc.org/] docs: Documentation ready for
generation with, for example, ReadTheDocs [https://readthedocs.io/]

	bump2version [https://github.com/c4urself/bump2version]: Pre-configured
version bumping with a single command

	If the cookiecutter-namespace-template [https://github.com/veit/cookiecutter-namespace-template] project template
has been changed, you can apply these changes with

$ cruft update

	Optional auto-release to PyPI [https://pypi.org/] when you push a new tag
to main (optional)

	Optional command line interface using Typer [https://typer.tiangolo.com] or
Click [https://palletsprojects.com/p/click/]

If you really want to create a new package with Python 2, in spite of the
Python 2.7 countdown [https://pythonclock.org/] and the Sunsetting Python 2
support [https://python3statement.org/], then use
cookiecutter-namespace-template <0.2.

Quickstart

	Install the latest Cookiecutter if you haven’t installed it yet (this
requires Cookiecutter 1.4.0 or higher):

$ python -m pip install -U cruft

	Generate a Python package project:

$ python -m cruft create https://github.com/veit/cookiecutter-namespace-template.git

	Create a repo and put it there.

	Register [https://pypi.org/account/register/] your project with PyPI.

	Add the repo to your ReadTheDocs [https://readthedocs.io/] account and
turn on the ReadTheDocs service hook.

	If you want to add the pyup badge to your README file

	create a new account at pyup.io [https://pyup.io] or log into your
existing account

	click on the green Add Repo button

	click Pin to add the repo

	Release your package by pushing a new tag to main.

Pull requests

If you have differences in your preferred setup, I encourage you to fork this
to create your own version. I also accept pull requests on this, if they’re
small, atomic, and if they make my own packaging experience better.

Tutorial

	Install cruft

First, you need to create a virtualenv for the package project. Use your
favorite method, or create a virtualenv for your new package like this:

python3 -m venv ~/.virtualenvs/my.package

Here, my.package is the name of the package that you’ll create.

Then install cruft:

$ cd ~/.virtualenvs/my.package
$ source bin/activate
$ python -m pip install cruft

	Generate Your Package

Now it’s time to generate your Python package.

Use cruft, pointing it at the cookiecutter-namespace-template repo:

$ cruft create https://github.com/veit/cookiecutter-namespace-template.git

You’ll be asked to enter a bunch of values to set the package up.
If you don’t know what to enter, stick with the defaults.

	Create a Git Repo

Go to your Git account and create a new repo named my.package, where
my.package matches the [namespace.package] from your answers to
running cookiecutter.

Note

If your venv folder is within your project folder, be sure to add
the venv folder name to your .gitignore file.

You will find one folder named after the [namespace.package]. Move into
this folder, and then setup git to use your Git repo and upload the code:

$ cd my.package
$ git init .
$ git add .
$ git commit -m "Initial commit"
$ git remote add origin git@example.org:MYUSERNAME/MY.PYCKAGE.git
$ git push -u origin main

Where MYUSERNAME and MY.PACKAGE are adjusted for your
username and package name.

You’ll need a ssh key to push the repo. You can generate a key or add an
existing one.

	Install dev requirements

You should still be in the folder containing the pyproject.toml
file.

Install the new project’s local development requirements:

$ python -m pip install -e '.[dev]'

	Release on PyPI

Here’s a release checklist you can use.

See also

	Packaging Python Projects [https://packaging.python.org/tutorials/packaging-projects/]

	Python Packaging User Guide [https://packaging.python.org/]

Prompts

When you create a package, you are prompted to enter these values.

Templated Values

The following appear in various parts of your generated project.

	full_name
	Your full name

	email
	Your email address

	github_username
	Your GitHub username

	project_name
	The name of your new Python package project. This is used to to create the
namespace and the package name. So spaces and special characters should be
avoided.

	project_name
	The namespace of your Python package. This should be Python import-friendly.
Typically, it is the slugified version of project_name.

	project_short_description
	A 1-sentence description of what your Python package does.

	release_date
	The date of the first release.

	pypi_username
	Your Python Package Index account username.

	year
	The year of the initial package copyright in the license file.

	version
	The starting version number of the package.

Options

The following package configuration options set up different features for your
project.

	command_line_interface
	Whether to create a console script using Typer
or Click.

Console script entry point will match the project_slug. Options:
['Typer', 'Click', "No command-line interface"]

PyPI Release Checklist

For Every Release

	Update HISTORY.rst

	Commit the changes:

$ git add HISTORY.rst
$ git commit -m "Changelog for upcoming release 0.1.1."

	Update version number (can also be patch or major)

$ bump2version minor

	Install the package again for local development, but with the new version
number:

$ python -m pip install -e '.[dev]'

	Run the tests:

$ tox

	Push the commit:

$ git push

	Push the tags, creating the new release on both GitHub and PyPI:

$ git push --tags

	Check the PyPI listing page to make sure that the README, release notes, and
roadmap display properly. If not, try one of these:

	Copy and paste the RestructuredText into http://rst.ninjs.org/ to find
out what broke the formatting.

	Edit the release on GitHub
(e.g. https://github.com/veit/cookiecutter-namespace-template/releases).
Paste the release notes into the release’s release page, and come up with a
title for the release.

Console Script Setup

Optionally, your package can include a console script using Typer [https://typer.tiangolo.com], Click [https://palletsprojects.com/p/click/]
or argparse [https://docs.python.org/3/library/argparse.html].

How it works

If the command_line_interface option is set to ['Typer'], ['click']
or ['argparse'] during setup, cookiecutter will add a file cli.py in the
project_slug subdirectory.

Usage

To use the console script in development:

$ python -m pip install -e PROJECTDIR

PROJECTDIR should be the top level project directory with the
pyproject.toml file.

The script will be generated with output for no arguments and --help.

	--help
	show help menu and exit

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to cookiecutter-namespace-templates’s documentation!

 		
 Cookiecutter Namespace Template

 		
 Features

 		
 Quickstart

 		
 Pull requests

 		
 Tutorial

 		
 Prompts

 		
 Templated Values

 		
 Options

 		
 PyPI Release Checklist

 		
 For Every Release

 		
 Console Script Setup

 		
 How it works

 		
 Usage

_static/minus.png

_static/plus.png

_static/file.png

